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Instructions

Retrieval Augmented Generation (RAG) applications require for the retrieval phase an
information source, that provides efficient search and retrieval of relevant materials. LLM
then uses the retrieved materials as a base for final output generation. The first
generation of RAG applications typically use vector or full-text indexes, or a combination
thereof, for retrieval. The disadvantage of these indexes is their limited ability to capture
connections and relationships between records that are semantically distant. One way
to overcome these limitations and improve overall relevance of the responses inferred
by LLM models, is the use of graph databases, which allows knowledge representationin
the form of a graph. Individual records are represented as nodes, relationships and
connections as graph edges. Both nodes and edges can be enriched with properties,
enabling efficient search within the graph. In effect, graph acts as a network of tags for
each chunk of information, providing organising principle for the knowledge base. This
approach has been termed GraphRAG.

Manual creation of knowledge graphs from hundreds of documents is usually not a viable
option and therefore an automation of the creation process is necessary for such cases.
NLP and LLM models can be used to process information chunks, identify properties and
relations.

Objective:

Electronically approved by Ing. Magda Friedjungova, Ph.D. on 7 November 2024 in Prague.
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The aim is to design and implement a process for creating a knowledge graph usable for
a GraphRAG application that meets the following requirements:

- The consumer will be an application serving as an advisor/assistant for company
employees

- The input consists of dozens of electronic documents (e.g., PDF, DOCX) containing
methodological guidelines, instructions, and product information

- All documents are in the same language

- The input documents contain only textual information

- The process should require minimal manual operations

- The process will only address the initial population of the graph

- The process shall use LLM and/or NLP models for input processing and graph creation
- The target platform for process implementation is Microsoft Azure cloud

- The preferred graph database is Neo4j, unless other platform can bring signifficant
advantages

Guidelines for Elaboration:

1. Conductresearch on LLM and NLP models, methods and tools for processing input
documents and creating the knowledge graph

2. Design individual phases of the process and select specific ways to implement them.
Justify each decision

3. Implement the process according to the design while adhering to the above
requirements

4.Integrate the created knowledge graph into a simple RAG application implementing
suitable retrieval strategies

5.Import a selected test set of documents into knowledge graph and into vector index for
comparison of GraphRAG and RAG retrieval approach

6. Use suitable automated test framework and perform the same tests of the retrieval
from the knowledge graph and from the vector indexes

7.Evaluate and compare the test results of the compared implementations

Electronically approved by Ing. Magda Friedjungova, Ph.D. on 7 November 2024 in Prague.
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Abstract

This thesis explores whether adding a knowledge graph can improve question
answering over Czech-language university regulations. Thirty-seven public
CVUT documents were converted into 1 328 text chunks; entities and rela-
tions were extracted with a Czech NER model and gpt-4.1-mini, deduplicated
via embeddings plus a lightweight LLM check, and stored in a Neo4j property
graph enriched with vector indexes. Three retrieval pipelines were compared
on 141 questions: a dense-vector RAG baseline, and two graph-augmented
variants anchored on LLM or NER entities. Automated evaluation with five
RAGAS metrics showed the dense baseline still delivers the highest overall
accuracy, though the LLM-anchored graph slightly improves median answer
relevancy. The study concludes that graph structure alone is not yet sufficient
without smarter retrieval, but the delivered pipeline, entity-resolution method
and evaluation harness provide a solid platform for future graph-aware QA
research in Czech.

Keywords GraphRAG, knowledge graph, large language models, natural

language processing, Neo4j, graph-based retrieval, document processing, vector
indexes
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Abstrakt

Tato prace zkouma, zda muze znalostni graf zlepsit zodpovidani dotazi nad
¢eskymi univerzitnimi predpisy. Sedmatficet vefejnych dokument@t CVUT bylo
rozdéleno do 1 328 textovych uryvki; entity a vztahy byly ziskdny pomoci
¢eského NER modelu a gpt-4.1-mini, deduplikovany kombinaci embeddingt a
jednoduchého LLM volani a ulozeny do property grafu Neo4j doplnéného o
vektorové indexy. Byly porovnany tii metody vyhledavani na 141 otazkach:
vektorovy RAG baseline a dvé grafem rozsitené varianty RAG zalozené na en-
titdch z LLM ¢ NER. Automaticka evaluace péti metrikami RAGAS ukéazala,
ze baseline RAG zatim poskytuje nejvyssi celkovou presnost, i kdyz LLM-graf
mirné zvysuje median relevance odpovédi. Studie uzavird, ze samotna grafova
struktura nestac¢i bez chyttrejsiho vyhledavani, avsak implementovana pipeline,
metoda pro deduplikaci entit a automizovana evaluace tvori solidni zaklad pro
dalsi vyzkum grafové orientovaného QA v Cestiné.

Klicova slova GraphRAG, znalostni graf, velké jazykové modely, zpracov-

ani prirozeného jazyka, Neodj, vyhledavani v grafu, zpracovani dokumenti,
vektorové indexy
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Introduction

Companies, schools, archives, or any large institutions often have a vast num-
ber of documents, guidelines, and procedures that their users (employees, stu-
dents) need to understand—or at least be able to search through efficiently.
Traditionally, this has been handled through keyword-based search. We don’t
have to look far—take the academic world, for example. The National Tech-
nical Library still uses a search engine that works this way, indexing nearly
a billion publications. Want to find all publications about cars? You search
for “((car) OR (automobile))”. Make a typo and write “automobele” instead
of “automobile”? You get no results. Keyword search doesn’t handle typos,
synonyms, or semantically similar text.
In business environments, users need answers to questions like:

= How do I set up tariff X for a customer?

Who handles complaints about product Y7
m What are the side effects of drug 77
= How do I apply for a credit card?

These kinds of problems are solved by embeddings. Embeddings are vec-
tor representations of text that capture the meaning and context of words.
They’re generated by machine learning models that convert words, sentences,
or entire paragraphs into numerical vectors that reflect their semantics and
interrelationships. Similarity search can then be performed over these vec-
tors. This allows us to build systems that can answer natural-language ques-
tions—even when the user doesn’t use the exact wording found in the docu-
mentation. There’s no need to know the right keywords or syntax—just ask a
question in plain language.

This approach forms the basis of retrieval-augmented generation
(RAG), where the query is first used to retrieve relevant information from
a knowledge base (via embeddings and vector search), and then a generative
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model (like an LLM) uses that information as context to compose the final
answer.

RAG significantly improves the accuracy, freshness of answers and signif-
icantly reduces hallucinations. However, its effectiveness drops when facing
more complex queries that mention multiple entities, processes, or steps scat-
tered across documentation. For example, a query like:

What is the return process for goods purchased via the company’s online
store, if the payment was made by card and the item is returned after
14 days?

requires combining information from multiple parts of the documenta-
tion—terms and conditions, internal procedures, refund policies, etc.

This is where GraphRAG comes in—an enhancement of classic RAG that
adds an explicit knowledge graph. Instead of working solely with unstructured
texts, GraphRAG extracts and stores relationships between entities (e.g., prod-
uct — has return period — 14 days) in a graph database. Queries can then be
answered not only through semantic similarity, but also by navigating struc-
tured relationships. This makes it easier to understand user intent, retrieve
relevant facts, and infer implicitly mentioned connections.

GraphRAG thus combines the power of language models, vector search,
and formal logic of knowledge graphs—which is crucial if we want to turn
documentation from a passive archive into an active assistant.



Chapter 1

Theoretical Background and
Related Work

1.1 Knowledge Graph Concepts

A knowledge graph (KG) is a structured representation of knowledge that en-
codes real-world entities as nodes and explicitly models the relationships be-
tween these entities as edges.

Knowledge graphs can be represented through various graph data models.
Two prominent models described by (1) are:

= Directed Edge-labelled Graphs (DEL): DEL graphs, or multi-
relational graphs, consist of nodes representing entities and edges explic-
itly labelled to represent binary relationships between these entities. RDF
(Resource Description Framework) is an example of a standardized DEL
graph data model, using triples (subject—predicate—object) to structurally
represent knowledge.

= Property Graphs: Property graphs extend the basic graph model by
allowing nodes and edges to have associated labels and multiple prop-
erty—value pairs. This model enables flexible data annotations directly
on edges and nodes, facilitating complex representations. Although prop-
erty graphs are not yet standardized, they are prominently implemented
in widely-used graph databases such as Neo4j.

In this thesis, we specifically focus on property graphs, consistent with
their practical implementation in Neo4;j.

1.1.1 Knowledge Graph Construction from Text

Building a knowledge graph from unstructured sources—known as knowledge
graph construction—is commonly decomposed into the following stages@):
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=m Knowledge acquisition — automatic extraction of entity mentions and
relations from text;

m Knowledge refinement — canonicalization, duplicate resolution, and
noise reduction;

= Knowledge evolution — incremental maintenance of the graph as data
change.

This thesis focuses on the first two phases for a static corpus; evolution is left
to future work.

1.1.2 Information-Extraction Tasks

Named Entity Recognition (NER) identifies and classifies entity men-
tions (e.g., Person, Organization, Location).

Relation Extraction (RE) detects semantic relations between entity pairs
(e.g., Person—worksFor-Organization).

Early open-IE systems such as KnowltAll and TextRunner demonstrated
large-scale Web extraction@, @ Modern approaches rely on supervised
or transformer-based models, achieving state-of-the-art accuracy in well-re-
sourced languages@ B)

1.2 Named Entity Recognition and Czech Lan-
guage Processing

NER overview. Named Entity Recognition (NER) seeks to locate spans
of text that denote real-world entities and assign them a category label (e.g.,
Person, Organization, Location). Current state-of-the-art systems fine-tune
large transformer encoders such as BERT (6) or RoOBERTa (7) on manually
annotated corpora, achieving high recall and precision across a hierarchy of
coarse and fine-grained entity types.

Czech-specific challenges. Applying NER to Czech introduces additional
difficulties:

=m Morphological complexity. Czech is highly inflected; an entity can
surface in multiple case forms (Praha vs. v Praze, Jan Novdk vs. Janem
Novdkem). A robust model must normalize these surface variants to a
single canonical entity.

m [imited resources. Compared with English, Czech offers fewer large an-
notated datasets. The principal resource is the Czech Named Entity Corpus
(CNEC 1.1) comprising ~5.9 k sentences and 33 k annotated entities in a
two-level hierarchy of “supertypes” and subtypes .
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CNEC and the RobeCzech model. We employ the pre-trained model
stulcrad/CNEC_1_1_Supertypes_robeczech-base (9). It builds on a ufal/
robeczech-base fine-tuned on CNEC 1.1 and reports an F1 score of =~ 86.7%
on the corpus evaluation split, covering the major categories required for this
thesis (persons, organizations, locations, etc.) (10).

Rationale for a dedicated Czech NER. Using a language-specific NER
model ensures high recall of Czech entity names and their correct type as-
signment, which would be difficult for a general-purpose LLM without further
fine-tuning. Offloading surface-form recognition to this specialized model al-
lows the LLM to focus on higher-level tasks such as relation extraction and
reasoning, while reducing both cost and error propagation in the pipeline.

1.3 Relation Extraction and Knowledge Graph
Schemas

Problem definition. Relation Extraction (RE) aims to automatically iden-
tify the relations between entities in unstructured text. Formally, given a
natural-language text z, the goal is to predict a set of triplets {(e1,r, e2)},
where e; and ey are entity mentions in x, and r is a relation type drawn from
a predefined set R (5).

Predefined relations vs. Open relation extraction.

= Predefined relations limits r to a fixed inventory of relation labels (plus
a “no-relation” class), requiring supervised examples for each label.

= Open relation extraction extracts arbitrary predicate phrases r directly
from text without a predefined schema (e.g. “works at”, “is part of”).

Techniques. Early techniques used pattern-based or dependency-parse rules
with statistical classifiers. Supervised neural models require annotated cor-
pora, while modern transformer-based and few-shot/zero-shot methods (e.g.
LLM prompts) generalize to unseen relations without extensive labeled data

(5)-
Property graph schema. Extracted triplets populate a Neo4j property
graph:

= Nodes are labelled by entity type (e.g. in our case Chunk, NLPEntity,
LLMEntityE), each carrying properties such as name or chunk_id.

= Edges use the predicate r as the relationship name (e.g. applies_to,
works_at).

1See Chapter@ for the full node definitions and properties.
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1.3.1 Large Language Models for Knowledge Ex-
traction

LLMs as extractors and reasoners. Large language models trained on
web-scale corpora enable in-contexrt learning: with a prompt alone, they can
emit structured outputs—JSON triples, entity lists, and so forth—without
task-specific fine-tuning. Evaluations of GPT-style models show that few-shot
prompting attains near—state-of-the-art F; on standard relation-extraction
benchmarks, effectively matching dedicated supervised systems (11). When
the task requires multi-hop reasoning over a knowledge graph, LLM-augmented
pipelines such as GMeLLo achieve new state-of-the-art results, surpassing ear-
lier specialized models (12). Hence, specialized neural extractors and LLMs
serve complementary roles: the former provide systematic coverage where large
labelled datasets exist, whereas the latter excel at filling schema gaps, inferring
implicit relations, and answering complex natural-language queries.

Prompting strategies for extraction.

= Direct prompts — “Extract all (subject, relation, object) triples from the
paragraph below.”

m Few-shot prompts — embed 2-3 demonstration examples so the model
can imitate the required JSON format (13).

m Chain-of-thought prompts — ask the model to enumerate entities first,
then derive relations, boosting recall on syntactically complex sentences
(14).

Advantages of an LLM-based extractor.

= Offers strong multilingual support, including morphologically rich lan-
guages such as Czech.

m May capture implicit or paraphrased relations that rule-based or pat-
tern-based systems often miss.

m Removes the need to curate large Czech-language relation datasets for su-
pervised training.

1.3.2 Embeddings

As discussed in the Introduction, vector embeddings map words to points in a
continuous space, reflecting their distributional semantics (15).
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Definition. Let V be a vocabulary and d € N a fixed dimension. A (static)
word-embedding function is

¢W01‘d Y — Rda

such that semantic similarity between tokens correlates with geometric prox-
imity of their vectors (15).
Transformer encoders extend this idea to full sequences:

Pseq : V¥ — RY,

yielding contertual embeddings whose value for a token depends on its sur-
rounding words (15). Sequence-level vectors are now standard in dense re-
trieval and RAG pipelines because they capture sentence- and paragraph-level
semantics.

Scope in this thesis. Unless stated otherwise, we treat an embedding as a
single function
¢: V" — R

implemented by a pre-trained multilingual model. Queries, sentences, and
document chunks are passed to ¢, which returns one d-dimensional vector,
even if the input may be a single word or a full paragraph.

1.3.2.1 Cosine similarity

Similarity search relies on the cosine-similarity function

> A B
A 5
A B n no

St [y

i=1 =1

Sc(A,B Sc : R*"xR" — [—1, 1],

where A; and B; denote the i-th components of vectors A and B, respec-
tively (15).

The expression is the cosine of the angle between two vectors in n-
dimensional space. Intuitively, Sc = 1 implies identical directions (angle 0°),
while S¢ = —1 implies opposite directions (angle 180°). Because the measure
depends on direction rather than magnitude, it is well suited for quantifying
semantic similarity in high-dimensional embedding spaces.

1.3.2.2 Structured outputs and constrained decoding

OpenAl’s Structured Output mode allows developers to attach a JSON Schema
to a prompt; the model’s response must conform to that schema (16). Under
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the hood, the schema is compiled once into a context-free grammar (CFGQG).
During generation the decoder performs dynamic constrained decoding: after
each token, the grammar restricts the set of valid next tokens to those that
keep the partial output within the language of the CFG, effectively forcing
syntactically correct JSON. Earlier IE pipelines relied on regex parsers and
post-hoc validations—constrained decoding removes this engineering burden
by guaranteeing syntactically valid JSON with negligible runtime overhead.

1.4 Retrieval-Augmented Generation (RAG)

Motivation. Prompting a large language model can answer many factoid
questions, but three well-documented issues remain (15):

1. Hallucination. LLMs occasionally invent facts with high confidence, espe-
cially in specialized domains.

2. Scope. A frozen model cannot answer questions about proprietary or
rapidly changing data.

3. Calibration. LLMs are not reliably aware of when they are guessing, making
it hard for users to judge answer quality.

RAG addresses these problems by grounding the model’s response in retrieved
documents that the user can inspect.

Two-stage architecture. The canonical RAG pipeline consists of two com-
ponents [15, § 14.3]:

Retriever embeds the user query, searches a document index, and returns
the top-k passages whose vectors are closest by cosine similarity.

Reader / Generator is an LLM that receives the retrieved passages con-
catenated with the original query and autoregressively generates an answer
conditioned on this augmented prompt.

This retrieve-then-generate design was popularized in open-domain QA sys-
tems such as DrQA (17) and remains the dominant pattern in industrial search
assistants. The usual implementation of the RAG QA pipeline is shown in
Figure 1.1, where the retriever is split into an embedding model and a vector
database, while the generator is the LLM itself.

Sparse vs. dense retrieval. Early QA engines matched TF-IDF vectors;
modern retrievers use dense BERT-style embeddings that better capture syn-
onymy and paraphrase (15). In this thesis both the baseline system and our
graph-augmented variant rely on dense vector search over chunk embeddings.
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Strengths and limitations. RAG reliably answers single-hop factual ques-
tions with source-grounded evidence. Nonetheless, empirical studies highlight
two persistent challenges:

m Multi-hop reasoning. If the answer requires combining facts from mul-
tiple passages, the LLM must infer the connection itself, often resulting in
partial or incorrect answers. (15, 12)

= Context length. Long or holistic queries may require more passages than
comfortably fit into the model’s prompt window.

These limitations motivate our exploration of GraphRAG, which injects knowl-
edge-graph structure to aid multi-hop retrieval and succinct context selection.

Evaluation tooling. Open-source frameworks such as Haystack and
LangChain (18, 19) assemble off-the-shelf modules for chunking, embedding,
retrieval, and prompt construction, while libraries like RAGAS (20) provide
automated metrics for answer correctness, faithfulness, and context recall. We
adopt the same metrics in Chapter 4.

1.5 Graph-enhanced Retrieval-Augmented Gener-
ation (GraphRAG)

Motivation. Vector-only RAG treats the knowledge base as an unordered
collection of passages. When an answer depends on traversing explicit rela-
tions—for example, degree — issued by — faculty — belongs to — univer-
sity—the retriever may surface the right fragments but leaves the LLM to
infer the links (cf. Section . GraphRAG incorporates a knowledge graph
(KG) into the retrieval loop so that graph traversal can steer which passages
and which structured facts enter the prompt, reducing hallucination and im-
proving multi-hop coverage (21).

High-level pipeline. Figure [1.2]sketches the similarity in implementation
of RAG and GraphRAG pipelines. For a direct visual comparison, see also
Figure 1.1

Core stages.

1. Entity extraction & linking. The user query is passed through the
same NER model as used at ingestion time to yield a set &, of entity nodes
in the KG.

2. Subgraph retrieval. A breadth-first expansion of radius h < 2 around
&, produces a candidate subgraph G,. Candidate nodes are ranked by
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Figure 1.2 Overview of the GraphRAG pipeline.
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'Graph Aware Retrieval
Layer

« vector retrieval

« graph traversal

« context fusion and
relevance reranking

a hybrid score that combines cosine similarity between the query embed-
ding and node embeddings with lightweight topological weights for salient

relations.

. Context assembly. Text passages attached to the top-k nodes, together

with a linearized list of triples (e, 7, €;), are appended to the LLM prompt.

. Answer generation. The LLM generates the final answer conditioned

on both the retrieved passages and the structured triples.

Observed benefits. Both Shavaki; Omrani; Toosi; Akhaee and the

Microsoft reference implementation (22) report that GraphRAG outperforms
standard RAG on multi-hop reasoning tasks. Furthermore Microsoft’s imple-
mentation, evaluated on proprietary support-document corpora, notes higher

answer accuracy and better grounding.

Challenges.
construction:

GraphRAG introduces additional considerations beyond KG
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m Graph completeness. Missing or incorrect edges can block traversal
and hide relevant context.

= FError propagation. Extraction errors at ingestion time propagate into
retrieval and ranking.

A quantitative comparison between vector-only RAG and GraphRAG on
our university-document dataset is presented in Chapter

1.6 Chapter Summary

This chapter reviewed the theoretical foundations and prior work that ground
the thesis:

=m Knowledge graphs formalize entities and relations. We focus on the
property-graph model adopted by Neo4j.

m Information extraction enables KG construction from text. A
Czech-specific NER model handles morphologically rich mentions, while
LLM-based relation extraction supplements structured triples.

=m Embeddings provide a vector space in which cosine similarity approxi-
mates semantic relatedness; dense embeddings underpin modern retrieval.

= Retrieval-Augmented Generation (RAG) combines a vector retriever
with an LLM reader to ground answers in source passages, yet struggles
with multi-hop reasoning and context limits.

m GraphRAG integrates a knowledge graph into the retrieval loop, guiding
passage selection via graph traversal and improving multi-hop question
answering.

These concepts motivate the thesis methodology: we will (i) build a prop-
erty-graph KG from Czech university documents, (ii) implement baseline RAG
and GraphRAG pipelines atop that graph, and (iii) evaluate their perfor-
mance using automated and manual metrics. The following chapter details
the end-to-end system design and implementation choices.

12



Chapter 2

Methodology:
Knowledge-Graph
Construction Pipeline

2.1 Overview of the Proposed Solution

This chapter presents the end-to-end methodology for constructing a hybrid
knowledge graph from a small corpus of Czech-language university documents.
The pipeline ingests PDFs, extracts structured knowledge using both NLP-
based and LLM-based methods, performs entity deduplication, and writes a
graph-structured representation into Neo4j. The resulting graph is augmented
with dense vector embeddings to support hybrid retrieval.

Figure 2.1 provides an overview of the core components involved in building
the knowledge graph:

= Data ingestion: Input documents are parsed and segmented into over-
lapping character-level chunks.

= Entity extraction: Each chunk is passed through two parallel extractors:

= a Czech-specific NER model for identifying canonical NLP entities,

= a GPT-based extractor using few-shot prompting and structured output
constraints, producing both LLM entities and relations.

m Entity deduplication: The LLM entities undergo semantic deduplication
via cosine similarity, followed by LLM-assisted disambiguation and union-
find clustering.

m Graph construction: The KG builder module writes all nodes, edges,
and relations into Neo4j, and computes embedding vectors for the chunk
nodes.

13



Overview of the Proposed Solution 14

m Vector indexing: Embeddings are stored in Neo4j’s vector index to en-
able dense retrieval queries.

The architecture supports both classical information extraction (via the
NER pipeline) and modern generative techniques (via LLM prompts), enabling
robust multi-strategy retrieval downstream.

PDFs
g
Data Ingestion:
Parsing and Chuni
Chunking
Chl;nks
g &
LLM-based NLP-based
Extractor NER Extractor
LLMEntities, P
LLMRelations NLPEntities
s v v ~\
Entity Deduplication £ KG builder ) (Final database #:]‘
(LLM only) o
P —_ Neol | J
S & >
Embedding |n|tla|l?e schema
and indexes
N ~——
PN S —_—
) &
Write Entities 3
Similarity filtering H
Deduplicated | N
N— g H
g ... LLMEntities, -} L |
+ LLMRelations Write Relations Graph
Ll H Database
Duplicity H
Decision EEE—— — _
(LLM call) &] H
Write Chunks
 —
g \ )
y 0y
r+\ —_— o A
g &
Union find merge Write nodes
g embeddings Jector
Index
e
~

B Figure 2.1 Overview of the knowledge-graph construction pipeline.

Design rationale. The pipeline reflects a pragmatic balance between en-
gineering feasibility and information quality. It combines traditional NLP
pipelines with prompt-based large language models to compensate for the
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limited availability of Czech-language relation datasets. By performing early
entity deduplication and using a graph-native database with hybrid search
support, the system is optimized for question answering. This modular archi-
tecture also enables experimentation with components such as deduplication
thresholds, embedding models, or LLM prompts.

2.2 Data Ingestion: PDF Parsing and Text Chunk-
ing

The input corpus consists of thirty seven official Czech-language university
documents (e.g., accommodation rules, study regulations, code of ethics), each
provided in PDF format. The documents contain machine-readable text and
require no OCR or language-specific preprocessing.

2.2.1 Lightweight PDF extraction with PyMuPDF

Text content is extracted using PyMuPDF @), a lightweight parser that offers
reliable per-page access. It was selected over more advanced document loaders
due to the homogeneous and clean structure of the input corpus.

For production use — more robust libraries such as Markitdown would
be preferred, as it handles more formats. The current design, however, did not
require multiple document types.

2.2.2 Fixed-size character chunking

Each document is segmented into overlapping character-level chunks with fixed
parameters:
chunk_size = 500, overlap = 50.

This simple sliding-window approach ensures local coherence while allowing
co-reference and relation spans to survive boundary splits. The chunking pre-
serves newlines and does not normalize whitespace or punctuation.

Another possible approach would be to use semantic chunking, where the
text is split into semantically coherent parts.

2.2.3 Reproducible cache format

The final output of this stage is a list of 1328 text chunks. These are cached to
a .kgcache file for deterministic reuse for graph augmenting experimentation
in later stages.
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2.3 Named Entity Extraction

The pipeline identifies real-world actors and concepts with two complemen-
tary extractors: a language—specific NER model (high precision for canonical
names) and a prompt-driven LLM extractor (wide coverage of domain con-
cepts and relations). Keeping the two streams separate lets us measure their
individual utility before any reconciliation.

2.3.1 Czech NER baseline

For language-specific tagging we adopt stulcrad/CNEC_1_1_Supertypes
_robeczech-base (10). The model starts from ufal/robeczech-base, a
Czech RoBERTa encoder pre-trained on circa 5 B tokens, and is fine-tuned on
the Czech Named Entity Corpus (CNEC 1.1) (8). It reaches an F; of ~86.7
% on the CNEC evaluation split, sufficient for tagging person, organisation,
and location names that recur in university regulations.

m Each chunk is fed to the model; every predicted span becomes a node
labelled NLPEntity.

m The chunk itself receives outgoing MENTIONS edges to all entities it contains.
m No cross-chunk merging is attempted at this stage; duplicates are handled

by the global deduplication step (Section|2.5).

2.3.2 Open extraction with an LLM

Many salient concepts in the documents are not classical named entities—e.g.
“ubytovaci smlouva” (accommodation contract) or “docasné preruseni studia”
(study suspension). To capture such domain-specific terms and the relations
between them we query gpt-4.1-mini in structured-output mode.

Schema-constrained prompt. FEach 500-character chunk is passed to
the model together with the pydantic schema in Listing 2.1. OpenAls
JSON-schema decoding (16) forces the reply to instantiate:

= Entity (name, optional type);
= Relationship (source, relation, target);

= ExtractionOutput (lists the above).



Relation Extraction with the LLM
B Code listing 2.1 Simplified pydantic schema supplied to gpt-4.1-mini.

class Entity(BaseModel):
name: str
type: Optional[str] = None

class Relationship(BaseModel):
source: str
relation: str
target: str

class ExtractionOutput(BaseModel) :
entities: List[Entity]
relationships: List[Relationship]

Graph projection.
m Every returned entity becomes an LLMEntity node.

= Fach Relationship is mapped to a directed edge whose label is the
LLM-supplied predicate (requires, governs, etc.).

m The originating chunk is linked to all LLM entities via MENTIONS edges,
mirroring the NLP pipeline.

The two extractor streams thus create parallel views of the corpus:
high-confidence canonical names from Czech NER, and flexible LLM-derived
concepts plus explicit in-text relations. Section 2.5 details how LLM entities
are deduplicated and how both layers are co-indexed for downstream querying.

2.4 Relation Extraction with the LLM

The structured output returned by gpt4.1-mini already contains directed
triples (source, relation, target). This section explains how the triples
are validated and written to the graph.

2.4.1 Minimal validation

For each chunk we iterate over the relationships list of the
ExtractionOutput. A triple is accepted if and only if the source and target
strings exactly match the name field of some LLMEntity extracted from that
same chunk. Triples that reference unknown entities are logged and ignored
(roughly a few dozen per full run).
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2.4.2 Edge creation

Every surviving triple produces a directed edge

(es) relation, (et),

where ez, e; € LLMEntity.

2.4.3 Linking text evidence

Each chunk node is connected to every entity it mentions via a MENTIONS
edge—irrespective of whether the entity originated from the Czech NER or
from the LLM extractor. These links later permit users (or evaluation scripts)
to trace any answer back to the exact passage in the source PDFs.

2.4.4 Graph snapshot after relation loading
=m Chunk nodes — MENTIONS — Entity nodes

=m LLMEntity nodes are connected by = 5000 relation edges drawn from
roughly 500 distinct predicate labels (numbers vary slightly across runs
due to the nondeterministic nature of the LLM).

m At this stage no attempt is made to merge semantically similar predicates;
edge labels remain exactly as produced by gpt-4.1-mini.

The resulting graph is therefore rich but intentionally heterogeneous: rela-
tionship predicates preserve the meaning of the source text, while the MEN-
TIONS links ensure every factual edge can be grounded in its originating
chunk.

2.5 Entity Resolution and Deduplication

Processing the documents chunk-by-chunk yields many near-duplicate
LLMEntity nodes: out of ~2 100 raw mentions only ~1 400 correspond to
truly distinct concepts. Left unresolved, such variants fragment the graph
and scatter incident relations. We therefore apply a two—stage entity-resolu-
tion procedure that combines fast embedding similarity with a targeted LLM
check.

2.5.1 Candidate generation via cosine similarity

1. Each entity name is embedded with text-embedding-3-large (d = 3072),
yielding vectors ve.

18
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2. For every unordered pair (e;,e;) we compute cos(ve,,ve;). Pairs scoring
> 0.80 are flagged as candidates for possible merger. The threshold was
tuned empirically to favour precision over recall: a lower value produced
unnecessary llm calls, whereas a higher one left obvious duplicates intact.

With ~2 100 entities the number of candidate pairs remains manageable;
no specialized nearest-neighbor index is required for this corpus size.

2.5.2 LLM confirmation

Fach candidate pair is passed to a small, cost-controlled gpt-4.1-mini instance.
The model receives the two surface forms (plus optional local context) and
must return a structured verdict:

= are_equivalent {yes,no}
= confidence {highmedium,low}

m 3 short justification.

Only pairs with are_equivalent=yes and confidence=high | medium
are accepted as duplicates. Low-confidence cases are conservatively left un-
touched.

2.5.3 Cluster formation and canonicalization

Accepted pairs are merged into clusters with a simple parent—pointer structure
(conceptually equivalent to Union—Find). For every cluster the longest surface
form in UTF-8 characters is retained as the canonical label; shorter aliases are
mapped to it.

Graph rewiring then proceeds mechanically:

1. All edges incident on an alias node are reassigned to the canonical node.

2. The redundant alias node is removed.

The procedure does not attempt to merge or normalize predicate labels;
relation strings remain exactly as produced by the LLM.

2.5.4 Outcome

= Nodes. The number of LLMEntity nodes decreases from ~2 100 to ~1
400 (-33 %).

m Edges. All ~5 000 relation edges are preserved; their endpoints are simply
re-anchored to the canonical nodes where applicable.
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m Performance. On a laptop-class CPU the entire resolution run finishes in
under 15 minutes, the bulk of the time spent in embedding calls; the LLM
verification is parallelized with an asynchronous semaphore limited to five
concurrent queries. The time may wary as the entity set may change with
each run.

Only LLMEntity nodes are deduplicated. NLPEntity nodes remain separate
so that the impact of the two extraction strategies can be analyzed indepen-
dently. Extending the same resolution logic to NLPEntities—or to cross-link
between the two subsets—remains an avenue for future work.

2.6 Knowledge-Graph Construction in Neo4j

All data are persisted in a local Neo4j 5.27.0 (community edition) instance
with the APOC and GenAI plug-ins enabled. Neo4j’s labelled-property graph
matches the pipeline’s output and allows both pattern matching (Cypher) and
vector search in one place.

2.6.1 Graph schema

Chunk 1328 nodes, one per text segment (properties: id, content,
embedding).

NLPEntity ~610 nodes produced by the Czech NER model (properties:
name, type).

LLMEntity ~1 700 nodes after LLM-based deduplication (properties: name,
embedding).

Edges comprise

= MENTIONS (Chunk— Entity) — every entity occurrence in a chunk.

= Semantic relations (LLMEntity—>LLMEntity) — roughly 5 000 directed
edges labelled by the verb phrase r extracted from gpt-4.1-mini.

Insertion is executed once, in batch mode, using Cypher MERGE so that
rerunning the loader is idempotent.

2.6.2 Vector indexes

The GenAl plug-in is used to create three approximate-nearest-neighbor
(HNSW) indexes:

Exact look-ups on name or id rely on the default string indexes Neo4j
creates automatically when these properties are used in equality predicates.

20
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Label Property Dimensions Metric

Chunk embedding 3072 cosine
LLMEntity embedding 3072 cosine
NLPEntity embedding 3072 cosine

B Table 2.1 Embedding properties used in the Neo4j graph

2.7 Embedding Nodes and Vector Indexing

Offline = embedding. Text vectors are generated once with
text-embedding-3-large (3 072 d):

m the 1328 chunk texts;
m the canonical names of all LLMEntity nodes.

Each vector is written to Neo4j via db.create.setNodeVectorProperty,
after which the above indexes are built. NLPEntity nodes are kept without
embeddings in the current prototype.

Query-time usage. User questions are embedded on-the-fly and fed into
Cypher queries that combine graph patterns with vector similarity, e.g.:

MATCH (c:Chunk)

WHERE vector.similarity.cosine(c.embedding, qvec) > 0.75
RETURN c.content

ORDER BY similarity DESC

LIMIT 5

This hybrid capability is central to the GraphRAG strategies described
in Section No graph evolution is performed in the present study; the
database is loaded once for all subsequent experiments.

2.8 Query—Answering Strategies

The completed knowledge graph supports three retrieval pipelines that share
an identical answer-generation back-end. All variants execute the same outer
loop:

1. Embed the user question with text-embedding-3-large (3 072-d, cosine
space).

2. Retrieve up to kK = 5 candidate chunks.

3. Concatenate < 10 chunks into a fixed prompt template and ask
gpt-4.1-mini to answer in Czech, citing only the supplied context.

Step 2 differs for each strategy.

21
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2.8.1 RAG-vector (baseline)

(a) Perform a k-nearest-neighbour search on all Chunk.embedding vectors us-
ing the question embedding.

(b) Keep the five chunks whose cosine similarity is at least 0.70.

No graph traversal is involved; this mirrors a “vector-only” RAG pipeline.

2.8.2 GraphRAG-NLP (NER anchors)

(a) Run the Czech NER extractor on the question and collect the entites it
recognises from question.

(b) Embed every recognised entity and issue a k-NN search on
NLPEntity.embedding; keep the five closest NLPEntity nodes (if

any).

(c) From those entities gather all directly mentioned chunks (c)<-
[:MENTIONS]-(e).

(d) Re-rank the distinct chunks by cosine similarity to the question embedding
and keep the top five.

(e) If no chunks are retrieved (due to the low relevance or failure to detect any
entities in the question), fall back to the baseline vector search.

NLPEntity nodes have no inter-entity edges, so the expansion is limited to
entity — chunk links.

2.8.3 GraphRAG-LLM (LLM anchors)

(a) Run LLM entity extraction on the question and collect the entities it recog-
nises.

(b) Embed every recognised entity and issue a k-NN search on
LLMEntity.embedding; keep the five closest LLMEntity nodes.

(¢) One-hop graph expansion gathers

1. chunks mentioned directly (c)<-[:MENTIONS]-(e);
2. chunks attached to neighbouring entities reached via a single typed se-
mantic edge (e)-[:REL*1]-(e2).

(d) Deduplicate the resulting chunks, re-rank them by cosine similarity to the
question embedding and keep the top five.

(e) If no chunks are retrieved (due to the low relevance or failure to detect any
entities in the question), revert to the baseline vector search.
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Why evaluate both GraphRAG variants? NER-anchored retrieval is in-
expensive and highly precise, but it can only pivot on the entities that the
Czech NER model recognises in the corpus it was trained on. Proper dedupli-
cation without LLM is very complex issue, since it can’t be done with embed-
dings only or fulltext similarity. For example, dates or references to sections of
text (such occur very often in law texts) are very similar by cosine similarity,
but they are not the same entities. And you also need to merge entities such
as "CVUT” and ”Ceské vysoké uceni technické v Praze” into one entity, so
you can’t choose any simple string metrics such as levenshtein distance either.
LLM-anchored retrieval, on the other hand, can pivot on every concept the
generative model decides is salient. This richer graph broadens recall, yet it
requires additional LLM calls during extraction and thus raises cost.
Running the two approaches side-by-side therefore answers a practical ques-
tion: Does the extra recall gained from LLM-derived entities justify their higher
computational (and monetary) cost compared with a lean, NER-only pipeline?

Prompt and generation. The same zero-temperature gpt-4.1-mini
prompt is reused in all settings. If no chunk provides the answer, the model
is instructed to return the fixed sentence: “Nemdm dostatek informaci v kon-
textu.” (“I do not have enough information in the context.” in Czech).

Reproducibility. All retrieval steps are expressed in Cypher and executed
through a single Python class (Neo4jQuestionAnswerer); parameters (k, 6 =
0.7, context length 10) are fixed for every experiment reported in Chapter g

2.9 Additional Design Choices

Graph store: why Neo4j over Cosmos DB (Gremlin API). Cos-
mos DB was evaluated early on, but its Gremlin interface does not ship with
a built-in vector index—semantic search would have required provisioning a
separate Azure Al Search instance. Neo4j 5.27 provides both labelled-property
graphs and an HNSW-based vector index behind a single Cypher endpoint, so
one database is enough for hybrid retrieval.

Entity-merge threshold & model choices. The 0.80 cosine cut-off
emerged from hands-on probing rather than an exhaustive grid-search. Canon-
ical synonym pairs such as “CVUT” versus its full Czech name land well above
that value and should be merged, whereas genuinely different terms (e.g. “kred-
itn{ limit” vs. “stravovaci stipendium”) sit far lower. Near-identical surface
patterns with different referents—legal clauses like “§ 48 odst. 2”7 versus “§
32 odstavec 37, or unrelated calendar dates—also register high similarity and
would be wrongly unified unless passed through the second-stage LLM dis-
criminator that asks whether two mentions denote the same real-world entity.



Chapter Summary

Manual spot-checks confirm that this hybrid filter removes the vast majority
of false merges, though a quantitative error rate is still future work.

All LLM calls use the gpt-4.1 family. Among its three variants,
gpt-4.1-mini proved the best compromise of token-level accuracy, response
time and API cost while fully supporting strict JSON-schema outputs required
by the extractor; the larger gpt-4.1 is more accurate yet prohibitively expen-
sive for batch extraction, and gpt-4.1-nano showed less extraction precision
in early tests. Embeddings come from the co-hosted text-embedding-3-large
endpoint for deployment simplicity, even though MASSIVE-MTEB leader-
boards (25, 26) list multilingual models that score higher on retrieval bench-
marks; integrating those stronger but externally-hosted encoders is logged as
future work once the pipeline graduates beyond Azure OpenAl endpoints.

2.10 Chapter Summary

This chapter detailed an end-to-end methodology for transforming thirty seven
Czech-language university regulations into a hybrid knowledge graph that sup-
ports retrieval-augmented question answering.

m Ingestion. PDFs are parsed with PyMuPDF and segmented into 1328 char-
acter-level chunks (size=500, overlap=>50), then cached for deterministic
reuse.

m Extraction. Each chunk is processed by two independent extractors: a
Czech RoBERTa NER model that yields high-precision NLPEntity nodes,
and a schema-constrained gpt-4.1-mini prompt that emits LLMEntity
nodes plus explicit semantic triples.

m Deduplication. Roughly 2 100 raw LLM entities are clustered into ~1
400 canonical nodes by combining 3 072-d cosine similarity (0 = 0.80) with
a lightweight GPT-based equivalence check.

m Graph persistence. Nodes, MENTIONS links and ~5 000 LLM-derived
relation edges are written once to a local Neo4j 5.27 instance. Two HNSW
indexes (Chunk / LLMEntity) enable vector search inside Cypher.

= Retrieval pipelines. Three strategies share a common gpt-4.1-mini an-
swer generator:
(i) a vector-only baseline,
(ii) GraphRAG anchored on NER entities, and

(iii) GraphRAG anchored on LLM entities with a one-hop expansion that
already captures simple multi-hop semantics.
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m Design choices. Key justifications include selecting gpt-4.1-mini for
cost-balanced structured output, Neo4j over Cosmos DB for native vector
search, and postponing deeper multi-hop traversal to future work.

The methodology yields a reproducible, modular pipeline whose compo-
nents (thresholds, embedding models, hop depth) can be swapped without
altering the overall architecture. The next chapter translates this blueprint
into concrete code, highlighting implementation nuances, performance obser-
vations and operational tooling used during evaluation.
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Implementation

This chapter translates the architectural blueprint outlined in Chapter|2 into
working code. It concentrates on the non-trivial engineering tasks— en-
tity resolution, graph construction, hybrid retrieval, and the command—line
interface that orchestrates them—uwhile routine matters (e.g. setting up a
Python environment) are only touched upon briefly.

3.1 Implementation Overview

Purpose and scope. Chapter 2 formalized what the pipeline should do. The
present chapter documents how those requirements were met in practice: the
concrete data structures, Cypher queries, prompt templates, and control flow
that together realize a knowledge-graph-centred question—answering system.
Only implementation choices that required design trade-offs or non-obvious
solutions are discussed in depth; boiler-plate set-up code is omitted for brevity
and can be inspected in the accompanying repository.

Technology stack. The prototype is written in Python 3.12 and relies
on:

= Neo4j 5.27.0 (community edition) with the APOC and GenAl plug-ins
for labelled-property storage and built-in HNSW vector search; (27)

= OpenAl gpt-4.1-mini for both relation extraction (schema-constrained)
and answer generation;

= OpenAl text-embedding-3-large for 3072-dimensional embeddings
used in similarity search and deduplication;

m LangChain for prompt management and structured output validation;
(19)
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= standard scientific-Python libraries (numpy, pandas) plus PyMuPDF for PDF
and excel parsing, and numerical computations such as cosine similarity.

The graph database runs locally in Docker; all LLM and embedding calls
are served by remote Azure OpenAl endpoints.

Methodology versus implementation. Whereas the previous chapter de-
scribed the pipeline conceptually, the sections that follow highlight:

(i) adaptations made when translating the design into code (e.g. batching
strategies to respect API rate limits),

(ii) pragmatic decisions that influence performance or cost (choice of
gpt-4.1-mini over the larger model),

(iii) auxiliary tooling—CLI commands, caching layers, logging—that make the
system reproducible and testable.

Repetitions of already-stated algorithms are avoided; the focus is on imple-
mentation nuance rather than theoretical recap.

Chapter roadmap.

Section 3.2 details the construction of the Neo4j knowledge graph from PDF
chunks, including schema-compliant Cypher batches and offline vector em-
bedding.

Section (3.3 explains the full question—answering pipeline: graph and vector
retrieval, deduplication, prompt assembly, and answer synthesis.

Section (3.4 presents the command-line interface that exposes five operational
modes (build, demo, interactive, eval), visualize for reproducible ex-
perimentation.

Section [3.5 summarizes the key engineering insights and paves the way for
the quantitative evaluation that follows in Chapter 4.

3.2 Knowledge-Graph Construction from Docu-
ments

The build sub-command of the CLI converts the thirty seven source PDFs
into a Neo4j property graph enriched with vector embeddings. This section
documents the practical mechanics—file—system cache, Cypher upserts, and
embedding upload—rather than repeating the high-level pipeline that was al-
ready covered in Sections 2.2-2.6.
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3.2.1 Disk Cache for Deterministic Re-runs

All expensive remote calls (LLM extraction, embeddings, equivalence checks)
are memoised under .kgcache/:

stem.chunks. json the list of pre-computed 500-char chunks for a single PDF;
stem.nlp.json Czech-NER output: per-chunk entities;
stem.1lm. json gpt-4.1-mini output: per-chunk entities and relations;

11m_dedup_result. json corpus-level artefacts after entity deduplication;
(canonicalized chunks and relations).

A cache entry is used only if its modification time is newer than the source
PDF, keeping the logic stateless and safe to re-run. The helper module shown
in Listing @ handles (de)serialization of pydantic objects while hiding the
underlying JSON.

# abridged from src/knowledge_graph_creation/pipelines/cache_utils.py
def read_entities_and_rels(pdf: Path, tag: str):
I//I//tag {Inlp/, /lel}/lllll
p = entity_path(pdf, tag)
if p.exists() and p.stat().st_mtime > pdf.stat().st_mtime:
data = json.loads(p.read_text('utf-8'))
return deserialise_chunks(data["chunk_entities"]), [
Relationship(**r) for r in data["relations"]
]

return None

B Code listing 3.1 Cache loader used by build_graph().

With the cache populated, a full build run drops from ~45 min (cold) to
under five minutes, the remainder being spent in Neo4j writes and embedding
generation.

3.2.2 Upserting Nodes and Edges

The loader walks the cached structures and executes three Cypher loops inside
a single write transaction:

(a) insert (:Chunk) nodes;
(b) insert (:NLPEntity) or (:LLMEntity) nodes plus MENTIONS edges;

(c) insert LLM-derived relation edges.

Unlike a bulk UNWIND, the current implementation issues one Cypher query
per row. Although sub-optimal for very large graphs, this decision simplifies
error handling and kept the code base compact. Future work could replace the
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def _upsert_branch(tx, chunk_entities: list[dict], label: str) -> None:
q_chunk = (
"MERGE (c:Chunk {id:$cid}) "
"ON CREATE SET c.content=$text "
"ON MATCH SET c.content=coalesce(c.content,$text)"
)
q_ent = f"MERGE (e: {label}” {{name:$name}}) SET e.type=$etype"
gq_link = (
£"MATCH (e: {label}" {{name:$name}}), (c:Chunk {{id:$cid}}) "
"MERGE (e)-[:MENTIONS]->(c)"

)

for idx, ce in enumerate(chunk_entities):
cid = f'"chunk_{idx}"
tx.run(q_chunk, cid=cid, text=ce["chunk"])
for ent in ce["entities"]:
tx.run(q_ent, name=ent.name, etype=ent.type)
tx.run(q_link, name=ent.name, cid=cid)

B Code listing 3.2 Actual helper used by the loader (non-batch, yet idempotent).

inner for-loops with batched UNWIND statements if ingestion speed becomes a
bottleneck.

Because every query employs MERGE, rerunning --mode build is safe: ex-
isting nodes are updated rather than duplicated.

3.2.3 Embedding Upload and Index Provisioning

Embeddings are generated once per unique text using the remote
text-embedding-3-large endpoint. A small helper checks for the presence
of the corresponding HNSW index and creates it if missing. Because index
creation is idempotent, subsequent build runs skip this step entirely.

Key Take-aways

= A lightweight JSON cache eliminates repeat LLM calls, making iterative
development practical.

= Although the current Cypher upsert logic is row-wise, it remains idem-
potent and easy to reason about; batching is a clear avenue for future
optimisation.

= All heavy computation (LLM, embeddings) is performed off-line; Neo4j is
used only for storage and similarity search, keeping database CPU usage
negligible.

3.3 Question—-Answering Retrieval Pipeline

Figure 3.1/ places the three retrieval strategies inside the full request-response
loop. All paths share the same post-retrieval stages—deduplication, prompt
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assembly, and gpt-4.1-mini answer generation—but differ in how candidate
chunks are surfaced. The next subsections dissect those differences.

3.3.1 Vector-only RAG (baseline)

(a) Embed question. 3 072-d vector via text-embedding-3-large.

(b) Anchor search. A K-NN Cypher query over the Chunk.embedding
HNSW index (Listing ’ﬁ) returns chunks whose cosine similarity is > 0.70;
at most five are kept.

(c) Proceed to prompt assembly (Section 3.3.4).

MATCH (c:Chunk)

WHERE vector.similarity.cosine(c.embedding, @qvec) >= 0.70
RETURN c.id, c.content

ORDER BY similarity DESC

LIMIT 5

B Code listing 3.3 Cypher used by the vector-only baseline.

3.3.2 GraphRAG-NLP (NER anchors)

(a) Entity spotting. The Czech NER extractor tags the question; each sur-
face form is embedded and searched against the NLPEntity vector index.
Up to five distinct anchor nodes are returned.

(b) Chunk collection. For every anchor e the query pulls chunks mentioned

directly by e:

(e) MENTIONS (c: Chunk)

No inter-entity edges exist on the NLP layer, so the traversal stops here.

(¢) Re-rank & fallback. Duplicate chunk_ids are collapsed; the survivors
are re-ranked by cosine similarity to the question vector and the top five
kept. If no chunk survives, the strategy falls back to the vector baseline.

(d) Continue with prompt assembly (Section|3.3.4).

3.3.3 GraphRAG-LLM (LLM anchors)

(a) Entity spotting. gpt-4.1-mini extracts entities from the question (same
schema as in Section 2.3.2).

(b) Anchor search. Each extracted name is embedded and looked up in
LLMEntity.embedding; five closest anchors are kept (Cypher in List-

ing.
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(c) One-hop expansion. For every anchor e the query collects (i) chunks
mentioned directly by e and (%) chunks reachable through one semantic
edge to a neighbor es:

(e) — [ REL] — (ep) 42NIONS (o Chunk)
Typical pattern: Faculty — is_governed_by — Dean; chunks mentioning
either entity are returned.

(d) De-dup & re-rank. Duplicate chunks are collapsed; the remainder is
re-ranked against the question vector and the five best are passed to the
prompt builder. An empty result triggers a fallback to the vector baseline.

UNWIND $anchorVecs AS v

CALL db.index.vector.queryNodes('llmentity_embedding_ idx', 5, v)
YIELD node AS e // anchors

WITH DISTINCT e, [iqvec AS qvec

OPTIONAL MATCH (e)-[:MENTIONS]->(c1:Chunk)
OPTIONAL MATCH (e)HH(:LLMEntity)-[:MENTIONS]->(c2:Chunk)
WITH collect(DISTINCT c1)fcollect (DISTINCT c2) AS cand, qvec

UNWIND cand AS c
WITH DISTINCT c,
vector.similarity.cosine(c.embedding, qvec) AS score

ORDER BY score DESC
LIMIT 5
RETURN c.id AS chunk_id,

c.content AS chunk_content,

score

B Code listing 3.4 Cypher fragment used by the LLM-anchored strategy.

3.3.4 From Chunks to Answer

The selected chunks are concatenated with the user question and fed into
gpt-4.1-mini via the fixed template in Listing

You are an assistant that answers questions from the provided context.

Context:
{{ concatenated chunks }}

Question: {{ user_question }}

Answer *only* from the context. If it is insufficient, answer:
"Neméam dostatek informaci v kontextu." (Always answer in Czech)

B Code listing 3.5 Prompt template used for all three retrieval strategies.
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3.3.5 Summary of Retrieval Logic

= Vector baseline is fast and model-agnostic but ignores graph structure.

m NER-anchored GraphRAG leverages canonical entities, yet struggles
with broader reasoning, since there are no relations between NLPEntities.

m LLM-anchored GraphRAG broadens recall and captures simple rela-
tion reasoning at the cost of extra LLM calls.

All three strategies are exposed byF Neo4jQuestionAnswerer and can be
toggled at run-time via the --strategy CLI flag (Section|3.4).

3.4 Command-Line Interface and Tooling

The prototype is packaged as an installable Python project managed by
uv . After cloning the repository you create an isolated environment and
install every recorded dependency with two commands:

uv venv
source .venv/bin/activate
uv sync # installs according to uv.lock

All subsequent actions are run through the same entry module:

uv run -m knowledge_graph_creation.main --mode <MODE> [flags]

3.4.1 Supported modes

3.4.2 Dispatcher skeleton

Listing shows the condensed argparse driver. Only the mode flag is in-
spected; helper functions in the earlier sections perform the substantive work.

3.4.3 Usage examples

# 1 - build the knowledge graph from all PDFs
uv run -m knowledge_graph_creation.main --mode build \
--pdf_glob "data/*.pdf"

# 2 - quick demo with LLM-anchored retrieval
uv run -m knowledge_graph_creation.main --mode demo \
--strategy 1llm

# 3 - batch evaluation with RAGAS (recommended)
uv run -m knowledge_graph_creation.main --mode eval \
--excel data/evaluation/eval_dataset.xlsx --generate

The CLI thus offers a single, reproducible entry-point: every experiment
reported in Chapter |4 can be recreated by invoking one of the commands
above.
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Mode Purpose Principal flags
build Construct and embed the --pdf_glob "data/.pdf"
knowledge graph from PDFs
demo Print five hardcoded QA --strategy={rag,1llm,nlp}
pairs from sample questions
interactive Interactive REPL for --strategy={rag,1llm,nlp}
free-form QA
eval Evaluate answers in a CSV --csv qa_merged.csv
(RAGAS or DeepEval) --evaluator={ragas,
deepeval}
--regenerate — overwrite
cached answers
visualize Generate PDF plots from --viz_csv
evaluated CSV _answers_evaluated.csv
--viz_out outdir
(optional)
B Table 3.1 Supported command-line modes and flags
3.5 Chapter Summary
This chapter has translated the conceptual pipeline of Chapter 2|into a con-
crete, fully—reproducible code base.
= Graph construction. Eight machine-readable PDFs are chunked,
dual-extracted (Czech NER & gpt-4.1-mini), semantically deduplicated,
and written to Neo4j through idempotent Cypher upserts. All costly

remote calls are cached to disk, turning a 45-minute cold run into a
five-minute incremental rebuild.

= Hybrid retrieval. A single class—Neo4jQuestionAnswerer —implements
three retrieval strategies: a vector baseline, an NER-anchored GraphRAG,
and an LLM-anchored GraphRAG with one-hop relation expansion.

= Prompting & generation. Retrieved chunks are injected into a fixed,
schema-agnostic prompt; gpt-4.1-mini either answers in Czech or returns
the fallback sentence “Nemdm dostatek informaci v kontextu.” (I don’t

have enough information in the context).

= Tooling. The entire workflow is exposed by a five-mode CLI (build, demo,
interactive, eval), (visualize) and packaged with uv (28) for one-com-
mand environment replication (uv venv — uv sync). Evaluation mode
supports either RAGAS (default) or DeepEval via --evaluator, ensuring
metric parity with the results reported later.
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parser = argparse.ArgumentParser ("knowledge-graph")
parser.add_argument ("--mode",

choices=("build", "demo", "interactive", "eval"),

default="demo")
parser.add_argument ("--strategy",

choices=("rag", "llm", "nlp"), default="11lm")
parser.add_argument ("--pdf_glob", default="data/*.pdf")
parser.add_argument ("--excel",

help="Evaluation sheet (.xlsx) for --mode eval")
parser.add_argument ("--generate", action="store_true")
parser.add_argument ("--evaluator",

choices=("ragas", "deepeval"), default="ragas")

args = parser.parse_args()

if args.mode == "build":
build_graph(args.pdf_glob)
elif args.mode == "demo":
_demo (args.strategy)
elif args.mode == "interactive':
_interactive(args.strategy)
elif args.mode == "eval':

if not args.excel:
parser.error("--excel is required for mode=eval')
_run_evaluation(args)

B Code listing 3.6 Core of knowledge_graph_creation.main.

With the implementation complete and every core component callable from
the command line, the stage is set for empirical assessment. Chapter 4]bench-
marks the three retrieval strategies on a held-out question set, compares eval-
uator outputs, and discusses the trade-offs uncovered during testing.
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Chapter 4

Results and Evaluation

This chapter benchmarks three retrieval-augmented QA pipelines on
Czech-language university requlations: a dense-vector RAG baseline,
a GRAPHRAG wariant anchored on LLM-extracted entities, and a
GRAPHRAG wariant anchored on Czech-specific NER entities. Perfor-
mance is quantified with the reference-free RAGAS metric suite, allowing a
multi-faceted comparison of retrieval quality, answer faithfulness, and fac-
tual correctness.

4.1 Evaluation Objectives and Scope

This chapter provides a systematic comparison of three retrieval strategies:
(i) a baseline dense-vector RAG approach, (ii) GRAPHRAGrLMm, and (iii)
GRAPHRAGyER. The goal is to determine how each retrieval mechanism influ-
ences answer quality and reliability when answering natural-language questions
over a corpus of Czech university documents. Evaluation relies on the RAGAS
framework @), which scores every answer on context relevance, faithfulness
to the retrieved evidence, and factual correctness. Comparing these metrics
across strategies reveals which approach best balances precise retrieval with
accurate, well-grounded generation.

4.2 Evaluation Process and Methodology

All three retrieval pipelines were run on an identical question set to ensure a
fair, head-to-head comparison. For each query the experiment followed three
deterministic steps:

1. Retrieval: passages were retrieved with the selected strategy.

2. Generation: a single, fixed gpt-4.1-mini prompt generated the answer;
no prompt engineering or fine-tuning varied across strategies.
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3. Evaluation: the question, retrieved context, and system answer were
passed to RAGAS, which returned scores for context precision, context recall,
faithfulness, answer relevancy, and answer correctness.

Because each question is accompanied by a reference answer derived from
the source documents, the answer_correctness metric variant that explicitly
compares the generated answer to ground truth was activated. All scores stem
from this single, uniform evaluation prompt, ensuring metric parity across
strategies. The resulting per-question scores are aggregated in the following
sections to compare the dense-vector baseline with the two GRAPHRAG vari-
ants.

4.3 FEvaluation Metrics

To capture both retrieval quality and answer quality we adopt the five metrics
implemented in the RAGAS library(30). Each metric returns a score in the
closed interval [0, 1], where larger values uniformly denote better performance.

4.3.1 Context Precision

Let C = {c1,...,ck) be the (ranked) list of passages returned by the retriever
and let R C C be the (latent) subset that is actually relevant to the query.
Denote by 1gery € {0,1} an indicator that passage cj is relevant. RAGAS
defines!

Precision;, = &

TPy, + FPy’
ContextPrecisi S Precisi 1 4.1
ontextPrecisiong = - ; recision 141 gy- (4.1)

where TPy (FPj) counts the relevant (respectively irrelevant) passages
among the first & items of C(31). A high score indicates that little extra-
neous text was retrieved; any additional still-relevant passages are rewarded
by recall rather than precision.

4.3.2 Context Recall

Context recall measures how completely the retrieval step recovered the evi-
dence required for a correct answer. It is approximated by

ICNR

ContextRecall =
|R|

€ [0,1],

!The implementation averages over K because most RAG systems use a fixed top—K
cut-off during evaluation.
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where missing relevant passages (|R \ C|) are detected by decomposing the
ground-truth answer into atomic claims and asking an LLM whether each
claim is supported by some passage in C'(32). A low recall thus flags omissions
that may cause downstream errors even when precision is high.

4.3.3 Faithfulness

Given the set of factual statements A = {ay,...,an} extracted from the gen-
erated answer, and the retrieved context C, the faithfulness score is

[{ ai | a; is entailed by C'}|
m

Faithfulness =

€ [0,1],

where “entailed by C” is decided by an LLM verifier(33). The metric penalizes
hallucinated claims; an answer can be perfectly faithful yet incomplete if recall
is low.

4.3.4 Answer Relevancy

Answer relevancy quantifies how directly the generated answer a addresses
the user question ¢, independent of factual accuracy. RAGAS constructs N
synthetic questions gi,...,gn by back-prompting an LLM on the answer and
then averages their semantic similarity to the original question:

N
1
AnswerRelevancy = N Zcos(Egi,Eq),
i=1

where E, and E4, are sentence embeddings of ¢ and g;, and N = 3 by de-
fault(34). Higher scores signal that the answer is on-topic and complete.

4.3.5 Answer Correctness

When a canonical reference answer g is available, correctness is computed as
an Fi-style overlap of factual statements:

TP

AnswerCorrectness = )
|TP| + 0.5(]FP| + |FN\)

where TP =facts present in both a and g, FP =facts only in a, FN =facts only
in ¢(35). This metric rewards factual agreement even when the verbal surface
form differs, complementing faithfulness (grounding) and relevancy (focus).

Interpretation. Together, these five metrics disentangle:

m Retrieval performance: context precision & recall,
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Mean metric profile

Answer
Correctness

Ralevancy

Conte;
Precision

B Figure 4.1 Radar plot with mean value of every metric.

m Grounding quality: faithfulness,
m Topical focus: answer relevancy,
= Factual accuracy: answer correctness.

The following sections analyse their empirical distributions to expose
the strengths and weaknesses of the dense-vector baseline versus the two
GRAPHRAG variants.

4.4 Aggregate Results per Metric

The evaluation runs 141 questions on a corpus created from 37 public CVUT
regulations (1328 chunks, 1790 LLM-entities, 611 NER—entities, 7590 edges),
resulting in 2115 evaluations (questions * strategies * metrics). Figures|4.1-4.4]
visualize the five RAGAS metrics for the dense baseline (rag), the LLM-
anchored graph (llm) and the NER-anchored graph (nlp).

Key observations.

(a) Baseline dominates on averages. Figure 4.1 shows the dense RAG has
the highest mean score on all five metrics.

(b) LLM-graph edges ahead on median relevancy. In Figure @ the
median of answer relevancy is slightly higher for llm than for the baseline;
on every other metric its median trails.
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B Figure 4.2 Full score distributions (median, IQR, 1.5 x IQR).

(¢)

NER-graph is consistently weakest. Both mean and median values are
lowest for nlp—expected, because the current KG stores only MENTIONS
edges, no typed relations.

Variance tells a cautionary story. llm exhibits the widest IQR on
precision and correctness; noisy or generic entity anchors occasionally lead
the retriever off-topic. The baseline shows the tightest spreads overall.

Error-coupling patterns. Heat-map (Figure 4.3) confirms that both
graph variants mostly lose ground to the baseline; the biggest drop is cor-

rectness for nlp. Correlation plots (Figure 4.4 D highlight that correct-

ness tracks recall more strongly than faithfulness: missing evidence hurts
more than hallucination.

In short, the dense vector retriever still provides the best end-to-end factual
accuracy. LLM-anchored GraphRAG can improve topicality for some ques-
tions but at the cost of higher variance; the current NER-graph offers no net
gain and often degrades performance because its structure is too shallow.

4.5 Discussion

The quantitative evaluation reported in section 4.4 crowns the dense RAG
baseline as the current winner. Yet the goal of this thesis was broader: to
prove that knowledge-graph construction from Czech PDFs is feasible and to
pave the way for richer retrieval policies. From that vantage-point the project
is still a success. Key contributions are summarized below.

m Retrieval—not representation—is the bottleneck.

The graph contains all passages present in the vector store and extra struc-
ture. Lower scores therefore stem from the first-round, embedding-only
graph search. Future work—agentic traversal, hybrid re-ranking, learned
path scoring—could unlock the additional signal.
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=m Turn-key ingestion and QA interface.
The pipeline reads raw PDFs, splits text, extracts entities (LLM or Czech
NER), deduplicates them, predicts relations and persists everything to
Neo4j. A command-line chatbot then lets users compare three retrieval
modes with a single flag.

= Extensible evaluation harness.
The RAGAS wrapper accepts any spreadsheet with question,
ground_truth and result columns. Adding a new retriever or metric is
a simple change (one function call), making the setup reusable for future
experiments.

= Practical entity-resolution.
Duplicate surface forms are collapsed with a union-find—style algorithm
that combines embedding cosine similarity with selective LLM comparisons.
A manual audit shows the graph now contains far fewer false duplicates,
while precision remains high—illustrating that purely statistical clustering
can be strengthened with light-weight LLM checks.

= Empirical insight into Czech IE.
Entity recognition works with both LLMs and classical NLP, but robust
relation extraction for Czech is still missing. A hybrid route—NER for
entities, LLM function-calling for relations—looks promising, though cost
savings are uncertain.

Take-away. Dense retrieval is tough to beat on a coherent Czech corpus, but
the software artefacts delivered here—a KG builder, a tri-modal chatbot, an
evaluation kit and a deduplication module—set the stage for smarter graph-
aware retrieval that could convert structural knowledge into higher factual
accuracy in future iterations.
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Chapter 5

Conclusion

This thesis examined whether introducing an explicit knowledge graph can
improve question answering over Czech university regulations. The work
combined traditional natural-language processing with large-language-model
techniques and evaluated their impact on a retrieval-augmented QA pipeline.
The main achievements and findings are summarized below.

1.

End-to-end pipeline. A fully automated workflow was implemented
that ingests 37 CVUT documents, splits them into 1328 fixed-length
chunks, extracts entities and relations by a Czech RoBERTa NER model
and by gpt-4.1-mini in structured-output mode, merges duplicate enti-
ties via cosine similarity and an LLM equivalence check, and stores the
resulting entities and relations in a Neo4j property graph equipped with
vector indexes.

. Entity-resolution method. Duplicate surface forms produced by the

LLM extractor were clustered with a union—find algorithm that first pro-
poses candidates by embedding similarity and then confirms identity
through a lightweight LLM call.

. Three retrieval strategies. The graph supports a dense-vector base-

line (RAG), GraphRAG anchored on LLM entities, and GraphRAG an-
chored on NER entities. All three share an identical gpt-4.1-mini answer
generator and a uniform prompt.

Quantitative evaluation. For 141 held-out questions each (strategy,
answer) pair was scored by the RAGAS metric suite—context precision,
context recall, faithfulness, answer relevancy, and correctness—yielding
more than two thousand individual measurements.

. Results. The dense-vector baseline achieved the highest mean score

on every metric. The LLM-anchored graph attained a slightly higher
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median answer-relevancy, suggesting potential once retrieval is improved.
The analysis indicates that the present bottleneck is the retrieval policy
rather than the knowledge-graph representation itself.

6. Reproducible tooling. All components—graph building, interactive
chat, and metric evaluation—are exposed through a single command-
line interface. Adding a new retriever or metric requires only a minor
code change, facilitating future experiments.

Overall, the thesis demonstrates that constructing a knowledge graph from
Czech legal and administrative texts is both feasible and operationally use-
ful. Although the initial graph-augmented retrievers did not yet surpass a
well-tuned dense baseline in overall accuracy, the graph provides structured
evidence that can be exploited by more advanced retrieval policies. The deliv-
ered pipeline, evaluation framework, and empirical insights lay a solid founda-
tion for future work on graph-aware search, multi-hop reasoning, and improved
information extraction for morphologically rich languages such as Czech.
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